34 research outputs found

    Ultrasound Nerve Segmentation Using Deep Probabilistic Programming

    Get PDF
    Deep probabilistic programming concatenates the strengths of deep learning to the context of probabilistic modeling for efficient and flexible computation in practice. Being an evolving field, there exist only a few expressive programming languages for uncertainty management. This paper discusses an application for analysis of ultrasound nerve segmentation-based biomedical images. Our method uses the probabilistic programming language Edward with the U-Net model and generative adversarial networks under different optimizers. The segmentation process showed the least Dice loss ("‘0.54) and the highest accuracy (0.99) with the Adam optimizer in the U-Net model with the least time consumption compared to other optimizers. The smallest amount of generative network loss in the generative adversarial network model gained was 0.69 for the Adam optimizer. The Dice loss, accuracy, time consumption and output image quality in the results show the applicability of deep probabilistic programming in the long run. Thus, we further propose a neuroscience decision support system based on the proposed approach

    Customer Gaze Estimation in Retail Using Deep Learning

    Get PDF
    At present, intelligent computing applications are widely used in different domains, including retail stores. The analysis of customer behaviour has become crucial for the benefit of both customers and retailers. In this regard, the concept of remote gaze estimation using deep learning has shown promising results in analyzing customer behaviour in retail due to its scalability, robustness, low cost, and uninterrupted nature. This study presents a three-stage, three-attention-based deep convolutional neural network for remote gaze estimation in retail using image data. In the first stage, we design a mechanism to estimate the 3D gaze of the subject using image data and monocular depth estimation. The second stage presents a novel three-attention mechanism to estimate the gaze in the wild from field-of-view, depth range, and object channel attentions. The third stage generates the gaze saliency heatmap from the output attention map of the second stage. We train and evaluate the proposed model using benchmark GOO-Real dataset and compare results with baseline models. Further, we adapt our model to real-retail environments by introducing a novel Retail Gaze dataset. Extensive experiments demonstrate that our approach significantly improves remote gaze target estimation performance on GOO-Real and Retail Gaze datasets

    Tool support for transforming Unified Modelling Language sequence diagram to coloured Petri nets

    Get PDF
    Modern software systems are expected to be dependable and the development of such systems requires strong modelling and analysis methods. Model-Driven Development is becoming a mainstream practice in software development to cater for that need. Models help to cope with the large scale and complexity of software systems by specifying the structural and behavioural aspects of the system and providing a means of communication between domain experts, analysts, designers and developers. Consequently, there is an increasing need for being able to combine the benefits of popular design approaches and formal models to contribute to better software products. Sequence Diagram-to-Coloured Petri Net (SD2CPN) is a scenario-based model transformation tool with analysis capabilities. It captures scenarios using Unified Modelling Language sequence diagrams and transforms them into coloured Petri nets that enable reliable analysis of the system models. The model transformations are based on the strongly consistent model-to-model transformation rules that are formally defined previously as part of this research. This paper presents the design, implementation, main features and usage of SD2CPN tool.Publisher PDFPeer reviewe

    EEG-Based Processing and Classification Methodologies for Autism Spectrum Disorder: A Review

    Get PDF
    Autism Spectrum Disorder is a lifelong neurodevelopmental condition which affects social interaction, communication and behaviour of an individual. The symptoms are diverse with different levels of severity. Recent studies have revealed that early intervention is highly effective for improving the condition. However, current ASD diagnostic criteria are subjective which makes early diagnosis challenging, due to the unavailability of well-defined medical tests to diagnose ASD. Over the years, several objective measures utilizing abnormalities found in EEG signals and statistical analysis have been proposed. Machine learning based approaches provide more flexibility and have produced better results in ASD classification. This paper presents a survey of major EEG-based ASD classification approaches from 2010 to 2018, which adopt machine learning. The methodology is divided into four phases: EEG data collection, pre-processing, feature extraction and classification. This study explores different techniques and tools used for pre-processing, feature extraction and feature selection techniques, classification models and measures for evaluating the model. We analyze the strengths and weaknesses of the techniques and tools. Further, this study summarizes the ASD classification approaches and discusses the existing challenges, limitations and future directions

    BehaveFormer: A Framework with Spatio-Temporal Dual Attention Transformers for IMU enhanced Keystroke Dynamics

    Full text link
    Continuous Authentication (CA) using behavioural biometrics is a type of biometric identification that recognizes individuals based on their unique behavioural characteristics, like their typing style. However, the existing systems that use keystroke or touch stroke data have limited accuracy and reliability. To improve this, smartphones' Inertial Measurement Unit (IMU) sensors, which include accelerometers, gyroscopes, and magnetometers, can be used to gather data on users' behavioural patterns, such as how they hold their phones. Combining this IMU data with keystroke data can enhance the accuracy of behavioural biometrics-based CA. This paper proposes BehaveFormer, a new framework that employs keystroke and IMU data to create a reliable and accurate behavioural biometric CA system. It includes two Spatio-Temporal Dual Attention Transformer (STDAT), a novel transformer we introduce to extract more discriminative features from keystroke dynamics. Experimental results on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb) demonstrate that BehaveFormer outperforms the state-of-the-art behavioural biometric-based CA systems. For instance, on the HuMIdb dataset, BehaveFormer achieved an EER of 2.95\%. Additionally, the proposed STDAT has been shown to improve the BehaveFormer system even when only keystroke data is used. For example, on the Aalto DB dataset, BehaveFormer achieved an EER of 1.80\%. These results demonstrate the effectiveness of the proposed STDAT and the incorporation of IMU data for behavioural biometric authentication

    Automated license plate recognition: a survey on methods and techniques

    Get PDF
    With the explosive growth in the number of vehicles in use, automated license plate recognition (ALPR) systems are required for a wide range of tasks such as law enforcement, surveillance, and toll booth operations. The operational specifications of these systems are diverse due to the differences in the intended application. For instance, they may need to run on handheld devices or cloud servers, or operate in low light and adverse weather conditions. In order to meet these requirements, a variety of techniques have been developed for license plate recognition. Even though there has been a notable improvement in the current ALPR methods, there is a requirement to be filled in ALPR techniques for a complex environment. Thus, many approaches are sensitive to the changes in illumination and operate mostly in daylight. This study explores the methods and techniques used in ALPR in recent literature. We present a critical and constructive analysis of related studies in the field of ALPR and identify the open challenge faced by researchers and developers. Further, we provide future research directions and recommendations to optimize the current solutions to work under extreme conditions

    fMRI Feature Extraction Model for ADHD Classification Using Convolutional Neural Network

    Get PDF
    Biomedical intelligence provides a predictive mechanism for the automatic diagnosis of diseases and disorders. With the advancements of computational biology, neuroimaging techniques have been used extensively in clinical data analysis. Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder, with the symptomology of inattention, impulsivity, and hyperactivity, in which early diagnosis is crucial to prevent unwelcome outcomes. This study addresses ADHD identification using functional magnetic resonance imaging (fMRI) data for the resting state brain by evaluating multiple feature extraction methods. The features of seed-based correlation (SBC), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) are comparatively applied to obtain the specificity and sensitivity. This helps to determine the best features for ADHD classification using convolutional neural networks (CNN). The methodology using fALFF and ReHo resulted in an accuracy of 67%, while SBC gained an accuracy between 84% and 86% and sensitivity between 65% and 75%

    Automated license plate recognition for resource-constrained environments

    Get PDF
    The incorporation of deep-learning techniques in embedded systems has enhanced the capabilities of edge computing to a great extent. However, most of these solutions rely on high-end hardware and often require a high processing capacity, which cannot be achieved with resource-constrained edge computing. This study presents a novel approach and a proof of concept for a hardware-efficient automated license plate recognition system for a constrained environment with limited resources. The proposed solution is purely implemented for low-resource edge devices and performed well for extreme illumination changes such as day and nighttime. The generalisability of the proposed models has been achieved using a novel set of neural networks for different hardware configurations based on the computational capabilities and low cost. The accuracy, energy efficiency, communication, and computational latency of the proposed models are validated using different license plate datasets in the daytime and nighttime and in real time. Meanwhile, the results obtained from the proposed study have shown competitive performance to the state-of-the-art server-grade hardware solutions as well

    PARROT: Interactive privacy-aware internet of things application design tool

    Get PDF
    Internet of Things (IoT) applications typically collect and analyse personal data that is categorised as sensitive or special category of personal data. These data are subject to a higher degree of protection under data privacy laws. Regardless of legal requirements to support privacy practices, such as in Privacy by Design (PbD) schemes, these practices are not yet commonly followed by software developers. The difficulty of developing privacy-preserving applications emphasises the importance of exploring the problems developers face to embed privacy techniques, suggesting the need for a supporting tool. An interactive IoT application design tool - PARROT (PrivAcy by design tool foR inteRnet Of Things) - is presented. This tool helps developers to design privacy-aware IoT applications, taking account of privacy compliance during the design process and providing real-time feedback on potential privacy violations. A user study with 18 developers was conducted, comprising a semi-structured interview and a design exercise to understand how developers typically handle privacy within the design process. Collaboration with a privacy lawyer was used to review designs produced by developers to uncover privacy limitations that could be addressed by developing a software tool. Based on the findings, a proof-of-concept prototype of PARROT was implemented and evaluated in two controlled lab studies. The outcome of the study indicates that IoT applications designed with PARROT addressed privacy concerns better and managed to reduce several of the limitations identified. From a privacy compliance perspective, PARROT helps developers to address compliance requirements throughout the design and testing process. This is achieved by incorporating privacy specific design features into the IoT application from the beginning rather than retrospectively
    corecore